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Sankhy? : The Indian Journal of Statistics 

1976, Volume 38, Series B, Pt. 4, pp. 339-349. 

A THREE-STAGE ELIMINATION TYPE PROCEDURE 

FOR SELECTING THE LARGEST NORMAL MEAN 

(COMMON UNKNOWN VARIANCE)* 

By AJIT C. TAMHANE 
Northwestern University, Evanston, Illinois 

SUMMARY. The problem of selecting the population with the largest mean from 

several normal populations having a common unknown variance is considered in the context 

of the indifference-zone approach. A three-stage elimination type procedure is developed. For 

the choice of the design constants cf the procedure a minimax criterion is proposed. A table 

of design constants is provided which can be implemented in practice. Monte Carlo sampling 

results are given to compare the performance of our procedure with the two-stage nonelimination 

type procedure of Bechhofer, Dunnett and Sobel (1964). 

1. Introduction 

Let n?(l < i < k) be k > 2 normal populations with means m and a 

common unknown variance a2. Let?i 
= 

(?i{1], ...,/?[jfc])' where/i{1] < ... < /i[k] 
denote the ordered means; we assume no prior knowledge concerning the 

correct pairing between Tit and 
/i^(l < i, j < k). The experimenter's goal 

is to select the "best" population which is defined to be the population having 

the largest mean 
/i[k]; such a selection is referred to as a correct selection (CS). 

According to the usual indifference-zone approach we assume that the 

experimenter restricts consideration to only those procedures R which 

guarantee the probability requirement 

P^(CS|P) 
> P* 

whenever/iw-/i[k_1} > S*, ... (1.1) 

where P*(l/fe < P* < 1) and S* > 0 are preassigned constants. 

It is known (see Dudewicz, 1971) that a single-stage procedure, which 

guarantees a specified probability requirement, does not exist for this problem. 

Bechhofer, Dunnett and Sobel (1954) proposed a two-stage procedure R2 in 

which the first stage outcome is only used to obtain an estimate of cr2 and not 

used to eliminate the "noncontending" populations. We refer to R2 as a 

nonelimination type procedure. 

In many practical situations, viz., drug testing, the number of populations 

under study is often very large. Therefore a procedure incorporating a 

* This work was partially supported by the Army Research Office?Durham and the Office 

of Naval Research at Cornell University. 
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preliminary screening stage to eliminate the noncontending populations from 

further sampling would be desirable. Paulson (1964) has given such a sequen 

tial elimination type procedure for the above selection problem. But sequen 

tial experiments become impractical when the time period that must elapse 

between the successive stages of the experiment is large, viz., agricultural 

field trials. Therefore what appears to be needed is a two or a three-stage 

procedure having the desirable elimination feature. The present paper is 

devoted to the development of such a elimination type procedure. We point 
out that a two-stage elimination type procedure for the above problem 

when a2 is known has been analyzed by Alam (1970) and Tamhane and 

Bechhofer (1977). 

2. The proposed three-stage procedure B3 

In the procedure to be proposed below all populations are sampled in the 

first two stages; the first stage outcome is used to obtain a preliminary estimate 

of the unknown cr2 and the cumulative outcome from the first two stages is 

used to eliminate the possible noncontenders. The selection of the "best" 

population is made at the end of the third stage. The rule used for retaining 

the 
' 
Contending" populations at the end of the second stage is of the type 

proposed by Gupta (1965) for his subset selection problem. We remark here 

that a two-stage elimination type procedure was developed by us but was 

found to be less efficient in the Monte Carlo (MC) sampling studies; the interest 

ed reader may refer to Tamhane (1975) for further details. 

Following are the steps in procedure R'3. (1) Take nx ^ 2 independent 

observations Xy (1 ̂  j ^ nx) from each 11$ and compute the sample means 

1^(1 < i < k) and a pooled estimate of the variance S2 = 2 S {Xti-X{p)2? 
i=-l j=l 

&(%?1). (2) Take additional (N2?n1) independent observations Xij from 

each n< (1 < i < k, nx+\ < j < N2) where 

I72 = 
max{Wl) [2(^-)2]}. 

... (2.1) 

In (2.1), Aj > 0 is a constant defined in (2.3) below and [x] is the smallest 

integer ?> x. Compute the cumulative sample means X\l\ and a two-stage 
* tf 2 

pooled estimate of the variance ?Sf 
= 2 2 (Xij~Xif)2lk(N2?l). Select a 

subset I of populations where IIi enters the subset iff X\2) > max 
X(|> 

?AS1(2/N2)i and where ? > 0 is a constant defined in (2.3) below. 

If I consists of a single population stop sampling and assert that, 
that population is best. (3) If / consists of more than one population 
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then take N$?N2 additional independent observations Xij(N2+l < j < N%) 
for i e I where 

^mwjtf,, [2 (?*)*]}, 
... (2.2) 

and h2 
= 

h2(N2) > 0 is defined in (2.4) below. Compute the cumulative 

sample means X<.3) and assert that max 
X({Z) is best. 

iei 

We now show how to choose hl9 h2(N2), and ? to guarantee (1.1). In the 

following, FVtP(x; {p}) denotes the c.d.f. at the equicoordinate point a: of a 

^-var?ate central ?-distribution with v degrees of freedom (d.f.) and having a 

common correlation ? 
p. 

Proposition 2.1 : If hx > 0 and ? > 0 are chosen to satisfy 

J^-Dj-iiAi+A; {1/2}) 
= 

?l9 ... (2.3) 

and having observed N2 
? 

n2 in (2.1), h2 
== 

h2(n2) > 0 is chosen to satisfy 

^-dj-?; OT) 
= A? - (2.4) 

where ?? and ?2 are preassigned constants such that P* < ?v ?2 < 1, and 

A+A-l=-P*. - (2-5) 

then R3 guarantees (1.1). 

Proof : See the Appendix. 

3. A CHOICE OF DESIGN CONSTANTS FOR R3 

In Rd we can regard nx, hx, ? (and thus ?x) and ?2 as design constants. 

Note that we do not regard h2 as a design constant since it is a random variable 

whose values depend on ?2 and N2. Since an infinite number of combinations 

of design constants can guarantee (1.1), to make a choice among these we 

propose to use the criterion of minimizing the maximum (w.r.t./i for fixed or2) 

of the expected total sample size. We refer to this as the minimctx criterion. 

Let N denote the total sample size associated with j?3, N = 
kN2 

+T(N3?N2), where T denotes the size of the subset retained by 2?3 for sampling 

in the third stage. In an unabridged version of this paper, which is available 

from the author, we have derived an expression for E? (N\B3). We have 

also shown that for fixed o"2, 8*, k, and for fixed values of design constants, 

E? (N\R3) is maximized w.v.t.a at the equal means (EM-) configuration and 

if (i is restricted to lie in the preference zone = 
{?i \ /?^ 

? 
/%_i] ^ #*} then 

E (N | i?3) is maximized at the slippage configuration /?fl] 
= 

fi[k-i\ 
= 

/*>&} 
? $* 

b4-? 
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(referred to as the least favorable (LF-) configuration hereafter). Therefore 

to determine the minimax choice of the design constants we have to minimize 

#em,(7 (^1^3) subject to conditions (2.3), (2.4) and (2.5). Not only is this 

optimization problem very difficult to solve but, more importantly, even if 

it can be solved on a computer, the solution of the optimization problem 
would depend on cr which is unknown to the experimenter. Therefore the 

solution would be of little use in practice. 

To obviate some of these difficulties in deriving the minimax choice of 

the design constants we shall assume that nx is chosen so that d.f. = 
k(nt? 1) 

is sufficiently large and hence SI, S\-*cr2 a.s. Then (2.3) and (2.4) become 

respectively, 

**-i(*i+A; {1/2}) 
= ?, ... (3.1) 

and %_X(A2; {1/2}) 
= 

?2 
= 

l+P*-?l9 ... (3.2) 

where Op(#; {p}) represents the c.d.f. value at the equicoordinate point x of a 

p-variate standard normal distribution with a common correlation = 
p. 

Further 

EjmAN\Rs) 
~ 2k 

^)2[A?+(A|-A?) f {??-ifca+AVa)-**-1 

(x?A<\/2)}d$}(x)]+teYms not involving hl9 h2 and ?, ... (3.3) 

where O(-) denotes the standard normal c.d.f. Thus approximately minimax 

values of hl9 A and ?2 (or equivalently A2) can be obtained by minimizing (3.3) 

subject to (3.1) and (3.2). Notice that the solution to this optimization 

problem does not depend on cr and 8* but depends only on k and P*. We also 

point out that this optimization problem is the same as the one encountered 

in determining the minimax choice of the design constants for the 

conservative two-stage procedure for the known a2 case (see Tamhane 

and Bechhofer, 1977) for which the solutions have already been 

tabulated for selected values of k and P*. However, to implement 

these solutions in the case of unknown cr2 would require tables 

of the equicoordinate points of equicorrelated multivariate ?-distribution 

with p 
? 

1/2 for arbitrary values of upper tail areas (l??i) and 

(I?/?2)?not just the usual 10%, 5%, 2-5% and 1% areas. Such tables 

are not currently available. 

To obviate the above difficulty we have to put an additional restriction 

(which leads to a suboptimal choice of the design constants) that ?x 
= 

?2 
? 

(1+P*)?2. This restriction allows us to construct tables of implementable 
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design constants for standard values of P* = 0-90, 0-95 and 0-99. Now 

by substituting A2 
= 

h?+? in (3.3) and differentiating it w.r.t.A we find that 

the "optimum" values of hx and A, say h1 and % satisfy 

2AJ 1- J {W-Hx+fy2)-Q*~^x-fy2)}dto{x)] 

= ?(2?1 + ?)(i-l)f(?) f 
{^-1(^)~^~1f^)}^(^ 

-.. O*-4) 

and *-i(Ai+A;{l/2}) 
= (l + P*)/2 = 

$1 
= 

j?a, ... (3.5) 

where f ( ) denotes the standard normal p.d.f. In Table 3.1 we give the values 

of constants (?, hl9 $2) for selected values of k and P*. 

TABLE 3.1. VALUES OF ( A, %l9 ?l9 ?2) FOR SELECTED 
VALUES OF k AND P* 

h P* x h1 ?x 
= 

As 

0.99 2.57806 0 0.995 
2 0.95 1.96231 0 0.975 

0.90 1.64692 0 0.950 

0.99 1.05983 1.73444 0.995 
3 0.95 1.02113 1.19101 0.975 

0.90 0.99112 0.92521 0.950 

0.99 0.95636 1.95864 0.995 
4 0.95 0.92951 1.41947 0.975 

0.90 0.90956 1.15252 0.950 

0.99 0.93227 2.06547 0.995 
5 0.95 0.90881 1.53297 0.975 

0.90 0.89180 1.26853 0.950 

0.99 0.96788 2.25107 0.995 
10 0.95 0.94726 1.73897 0.975 
0.90 0.93301 1.48401 0.950 

0.99 1.09494 2.37042 0.995 
25 0.95 1.07451 1.87843 0.975 

0.90 1.06084 1.63316 0.950 

For k = 2, hx 
? 0 implies R3 reduces to a two-stage procedure. 

The entries in the table are correct to 4 decimal places. 

Since 
i^-D^-?+S; {1/2}) < **_A+*; {1/2}) 

= & for ftK-1) < oo, 

for implementation purposes we must adjust hx and ^ to some new values, 
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say h[ and V, such that Fk{n _1} ^(K+V; {1/2}) 
= fa and hence h[+V > 1 9 

?i+?. Given ft?+^', which can be found from Krishniah and Armitage 

(1966) or Gupta and Sobel (1957) for selected values of k, d.f. = 
&(%? 1), and 

j?!, we suggest that h[ and ?' be chosen so that h'jV 
= 

hJ?. 

4. MONTE-CARLO SAMPLING RESULTS 

If R2 and P3 are both designed to guarantee (1.1) then to compare their 

performances we define the relative efficiency (RE) of R2 w.r.t. J?3 by taking 
the ratio of their expected total sample sizes as follows 

RE|1,0(?*,i",*|??.?i,A>A1.?;?i/?8) 
= 

f^j^ 

- (4.1) 

where n0 
= the first stage sample size for R2. An expression for the expected 

total sample size associated with 
R2,EyLy(7(N\R2), 

was given by Bechhofer 

et al. (1954). Note that 
E^i<r(N\R2) does not depend on /i. 

Due to the complicated nature of the expressions for 
E^i(T (N \ R2) and 

E^)(T(N\R3), 
a direct analytical comparison between R2 andP3 appears to be 

difficult. Therefore our comparison is based on the results of MC simulations. 

In these simulation experiments we were particularly interested in studying 

(I) the performance of P3 relative to R2 in terms of the RE-values at the 

EM- and LF-configurations for selected values of #*, P*, k, a2 and n0 
= 

nv 
and (2) the extent of overprotection in terms of excess P(CS) over guaranteed 
P* afforded by P3 when the fi% are in the LF-configuration. 

The MC experiments were performed for k ? 
5, 10, and 25 and P* = 0-90 

and 0-95; the value of 5* was kept fixed throughout at 0-5. For each (k, P*) 
combination we considered a2 = 1 and 5. The first stage sample sizes for 

R2 and P3 were chosen to obtain a reasonably large (at least 20 to 30) number 

of d.f. for the estimation of cr2. Same values of XW (1 ̂  i < k) and Sf were 

used for simulating the i-th stage (I 
= 

1,2) of both R2 and P3; the purpose 

being to eliminate the difference in the performances of R2 and Rs on this 

account. The values of Xp and Sf were obtained by generating standard 

normal and chi-square random variables (r.v.'s) by usual techniques. For each 

run 1000 experiments were conducted. The results of the simulation studies 

are given in Table 4.1. A summary comparison of R2 and j?3 in terms of the 

MC estimates of the RE-values at the LF- and EM-configuratjons is given in 

Table 4,2, 



TABLE 4.1. MONTE CARLO ESTIMATES FOR R2 AND R3 

(P* 
= 

0.90) 

k nx ai hx' r 
prob, of correct selection 

PLF,a(CS|i?2) PLF,a(CS|i?3) 

total sample size subset size 

^,oW^2) Sl2P,a(N\R3) EeM,o(N\R3) ElfATIRs) EeM,o(T\Rs) 

HI 
W 

Q 

si 

3 
> 

M 
O 

hi 

O 
O 

? 

5 7 1.0 1.32118 0.92882 
0.912 

(.0090) 

0.924 

(.0084) 

146.93 

(1.12) 

112.79 

(1.35) 

139.47 

(1.49) 

1.715 

(.049) 

2.812 

(.047) 

5 7 5.0 1.32118 0.92882 
0.900 

(.0095) 

0.919 

(.0095) 

717.81 

(6.04) 

561.61 

(5.99) 

678.11 

(6.02) 

1.820 

(.048) 

2.847 

(.047) 

10 4 1.0 1.55952 0.98048 
0.908 

(.0091) 

0.921 

(.0085) 

385.60 

(2.99) 

267.61 

(2.30) 

321.61 

(2.42) 

2.504 

(.069) 

4.542 

(.069) 

10 4 5.0 1.55952 0.98048 
0.894 

(.0097) 

0.909 

(.0091) 

1928.6 

(16.0) 

1334.8 

(11.3) 

1591.3 

(11.9) 

2.593 

(.071) 

4.614 

(.073) 

25 5 1.0 1.65893 1.07757 
0.889 

(.0099) 

0.913 

(.0089) 

1181.9 

(5.19) 

750.06 

(5.37) 

880.43 

(5.48) 

5.235 

(.133) 

8.850 

(.134) 

25 5 5.0 1.65893 1.07757 
0.902 

(.0094) 

0.909 

(.0091) 

5898.6 

(26.9) 

3668.7 

(25.0) 

4336.5 

(27.3) 

5.016 

(.127) 

8.794 

(.135) 

The numbers in round brackets are standard errors. 



TABLE 4.1. (Contd.) MONTE CARLO ESTIMATES FOR R2 AND R3 

(P* 
= 

0.95) 

W 
prob, of correct selection total sample size subset size 

PLF,o(CS|i?2) PLF,a(CS|i?3) E^n{N\R2) JE7LF,a(^|i?3) EjS>M,o{N\R3) Ejj?ia{T\R3) EeM,o(T)R3) 

5 7 1.0 1.61974 0.96026 
0.944 

(.0073) 

0.961 

(.0061) 

205.19 

(1.62) 

146.17 

(1.53) 

185.25 

(1.65) 

1.401 

(.047) 

2.862 

(.045) 
> 

h3 

w 

5 7 5.0 1.61974 0.96026 
0.951 

(.0068) 

0.959 

(.0063) 

1003.9 

(7.9) 

716.84 

(6.88) 

904.16 

(7.04) 

1.386 

(.046) 

2.905 

(.047) 

10 4 1.0 1.84499 1.00501 
0.955 

(.0066) 

0.962 

(.0060) 

522.96 

(4.19) 

343.98 

(2.75) 

420.61 

(2.90) 

2.110 

(.068) 

4.782 

(.073) 

10 4 5.0 1.84499 1.00501 
0.945 

(.0072) 

0.953 

(.0067) 

2592.2 

(20.8) 

1682.1 

(13.1) 

2064.3 

(13.6) 

2.023 

(.066) 

4.697 

(.072) 

25 5 1.0 1.91618 1.09610 
0.951 

(.0068) 

0.949 

(.0070) 

1512.2 

(6.74) 

931.4 

(5.62) 

1115.9 

(6.02) 

4.546 

(.126) 

9.237 

(.138) 

25 5 5.0 1.91618 1.09610 
0.951 

(.0068) 

0.961 

(.0061) 

7515.0 

(34.2) 

4582.4 

(28.2) 

5497.1 

(31.0) 

4.430 

(.122) 

9.064 

(.135) 

The numbers in round brackets are standard errors. 
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An examination of Table 4.2 reveals that for all the cases considered, the 

performance of R3 is consistently better than that of R2 even in the 
' 
'worst" 

possible parameter configuration of equal means. For fixed P* and cr2, 

relative performance of P3 improves with k. This is due to the fact that the 

screening aspect of Rs becomes more effective for larger k which is also evident 

from the values of the expected retained subset sizes given in Table 4.1. In 

practice, the /?/s would be spread somewhat further apart and therefore even 

greater savings would result by using i?3 than those indicated by the RE 

values in the LF- and EM-configurations. We also note that the choice of 

design constants (?', h\, ?2) which is determined without the knowledge of 

(T2 appears to work well for a range of cr2-values. Finally we note that P3 

provides a greater overprotection in terms P(CS) whereas R2 does not provide 

any appreciable overprotection. This conservative nature of P3 is due to 

the Bonferroni inequality used in determining the conditions to be satisfied 

by (A,hv?2) for guaranteeing (1.1) (see the proof of Proposition 2.1). 

TABLE 4.2. ESTIMATED VALUES OF THE RELATIVE 
EFFICIENCY OF R2 w.r.t. R3 

k P* a2 RElf,(t BEem,<x 

1.0 0.768 0.949 
5 0.90 - 

5.0 0.782 0.945 

1.0 0.713 0.903 
5 0.95 - 

5.0 0.714 0.900 

1.0 0.694 0.834 
10 0.90 - 

5.0 0.692 0.825 

1.0 0.658 0.804 
10 0.95 - 

6.0 0.649 0.796 

1.0 0.635 0.745 
25 0.90 - 

5.0 0.622 0.735 

1.0 0.616 0.738 
25 0.95 - 

5.0 0.610 0.731 
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Appendix 

Proof of proposition 2.1 : Denote by Xjg 
? the cumulative sample 

mean up to the Z-th stage from the population having the mean 
/^(l ^ i < k; 

I = 2, 3) and 6y 
== 

/?[fl? /?[i3(l < ?, j < fc). We have 

?- 
VW*.) 

< 
^.^?f! 

< ̂ )>-A?1(2/iV2)V2 for some i ̂  *} 

+ P^JIgK *$ for some i =? k) 

- 
P^JTp < (?WW./2)1" Y i * ?} 

< 
2-P(i((r{!r?-2><(?*/A1)(iV2/2)i/2+A 

Y i* Je} 

- 
^.?rW 

< (?*/??i)W2)1/2 Y?#*} 

= 
2-Pi-Pj (say), 

... (A.l) 

whenever **,*_,>**. In(A:l)TJ')={Ig-^+i?)V^i}/'8|-iV2" (1 < ? 

<fc?1; ? = 2, 3). It is straightforward to eheek that (T?\ ..., Tf}t ) and 

(T^\ ..., T^x ) each have a (h? l)-variate central ^-distribution with equal 

correlation = 
1/2; the former has &(%? 1) d.f. and the latter has k(N2? 1) d.f. 

(random) associated with it. Now from (2.1) we have Ax < (8*IS1)(N2?2)1'Z and 

therefore Pl > Fk(n _lu ̂(T^+A; {1/2}) 
= /?x. Next conditioning on 2V2 = n2 

and from (2.2) noting that^KX (**/#s)W2)1/s we have P2 > ?^^-i),*-! 

(h2(N2); {1/2}) IJV2 
= 

%} 
= /?2. Substituting in (A.l) and using (2.5) we obtain 

P? (CSI?3) > P* whenever fc, fe_x > <T. 
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